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Summary 

This paper deals with a mathematical model of a SEM-EBIC experiment devised to measure the diffusion length 
of semiconductor materials. In the model the semiconductor material occupies a half-space, of which the plane 
bounding surface is partly covered by a semi-infinite current-collecting junction, the Schottky diode. A scanning 
electron microscope (SEM) is used to inject minority carriers into the material. It is assumed that injection occurs 
at a single point only. The injected minority carriers diffuse through the material and recombine in the bulk at a 
rate proportional to their local concentration. Recombination also occurs at the free surface of the material, not 
covered by the junction, where its rate is determined by the surface recombination velocity v. The mathematical 
model gives rise to a mixed-boundary-value problem for the diffusion equation, which is solved by means of the 
Wiener-Hopf technique. An analytical expression is derived for the measurable electron-beam-induced current 
(EBIC) caused by the minority carriers reaching the junction. The solution obtained is valid for all values of v, 
and special attention is given to the limiting cases v = o0 and v = 0. Asymptotic expansions of the induced 
current, which are usable when the injection point is more than a few diffusion lengths away from the edge of the 
junction, are derived as well. 

1. Introduction 

T h e  e lec t r ica l  p r o p e r t i e s  o f  s e m i c o n d u c t o r  ma te r i a l s  a re  d e t e r m i n e d  to a la rge  ex t en t  by  

the  t r a n s p o r t  p rope r t i e s  o f  the  m i n o r i t y  car r ie rs  [1]. I f  the  d o p i n g  of  the  m a t e r i a l  is such  

tha t  it is o f  n - type ,  t h e n  the  holes ,  w h i c h  c a n  be  c o n s i d e r e d  as pos i t i ve ly  cha rged ,  a re  the  

m i n o r i t y  carr iers .  I n  p - t y p e  m a t e r i a l  this  ro le  is p l a y e d  by  the  e lec t rons .  I f  m i n o r i t y  

ca r r i e r s  a re  i n j ec t ed  in to  s e m i c o n d u c t o r  ma te r i a l ,  the re  is a t e n d e n c y  fo r  t h e m  to  d i f fuse  

a w a y  f r o m  the  p o i n t  of  in jec t ion .  Th i s  p rocess  is c h a r a c t e r i z e d  by  the  d i f f u s i o n  coe f f i c i en t  

D.  O n  the  o t h e r  hand ,  b e i n g  i m m e r s e d  in a r eg ion  w h e r e  cha rges  o f  the  o p p o s i t e  k i n d  

a b o u n d ,  the  m i n o r i t y  car r ie rs  s h o w  a p r o p e n s i t y  t o w a r d s  a n n i h i l a t i o n  by  w a y  of  a p rocess  

ca l l ed  r e c o m b i n a t i o n .  T h e  l a t t e r  p roces s  is c h a r a c t e r i z e d  b y  the  l i f e t ime  r in the  sense  tha t  

t he  r e c o m b i n a t i o n  occu r s  m o r e  r ap id ly  as r gets  smal ler ,  Le t  C =  C ( x ,  t )  d e n o t e  the  
c o n c e n t r a t i o n  o f  the  m i n o r i t y  car r ie rs  at  p o s i t i o n  x ~ R 3 o r  R 2 a n d  t i m e  t. T h e n  the  

c o m b i n e d  p roces se s  of  d i f fu s ion  and  r e c o m b i n a t i o n  a re  g o v e r n e d  by  the  d i f fu s ion  equa -  
t i on  

C 
-~t = D A C  - ~- + Q ( x ,  t ) ,  (1 .1)  
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in which the source term Q describes the generation rate of minority carriers per unit 
volume. In the steady state Eqn. (1.1) reduces to 

C DAC . . . .  Q(x) (1.2) 't 

where C and Q are independent of the time t. 
On the basis of the two parameters D and z one may define a characteristic length 

L = 1/2 (1 .3 )  

which is called the diffusion length. This parameter is of particular interest to semiconduc- 
tor technologists as it is a measure of the distance over which the concentration drops an 
order of magnitude. To determine the parameter L, simple experiments have been devised 
involving configurations for which a closed-form solution of Eqn. (1.2) is available. The 
most widely used configuration is the one shown in Fig. 1. Here, a diode consisting of 
both p- and n-type material is used. As its dimensions exceed the diffusion length by at 
least one order of magnitude, the diode may be considered semi-infinite. In terms of 
Cartesian coordinates x, y, z, the diode occupies the half-space y >/0 and its junction is 
located at x = 0. By means of a scanning electron microscope (SEM) minority carriers, 
which are holes in the case of Fig. 1, are injected at the point (x 0, Y0, %)- The holes 
reaching the junction cause an electron-beam-induced current (EBIC) 

. o o  .oo a c  
IffiLoodZJo D-~x (O,Y,z)dY (1.4) 

which can be measured. The variation of the current I caused by varying the point of 
injection gives information that may lead to the determination of the diffusion length L. 

The mathematical problem corresponding to the configuration of Fig. 1 requires the 
solution of Eqn. (1.2) subject to the boundary conditions 

C(O,y,z)=O, DaC(x,O,z)=vC(x,O,z) ay (1.5) 

at the junction and the free surface, respectively. The parameter v is the so-called surface 

)unction 

p-material 

,Y 

n-material 

:x 1 (x°'y°'z°) 
ISEM 

Figure 1. Configuration for diffusion length measurement by means of a p-n junction. 
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recombination velocity, and the boundary condition at the free surface expresses that the 
surface is a sink for the minority carriers. This is due to a recombination phenomenon 
over and above that prevailing in the bulk,and existing in an extremely thin surface layer. 
The solution of problem (1.2), (1.5), is readily obtained by the method of images, as 
already recognized in the early days of semiconductor technology by, for example, Van 
Roosbroeck [2] who derived the Green's function pertinent to the problem (1.2), (1.5). 
Since then the matter remained dormant for about two decades before interest in this 
problem area was renewed. As a result numerous papers, [3,4,5,6,7] to name a few, have 
been published, while a recent survey may be found in [8]. In retrospect it is clear that the 
successful use of the configuration of Fig. 1 as an experimental device is to be attributed 
mainly to the fact that a closed-form analytical solution of the corresponding mathemati- 
cal problem is available. Thus a careful experimentation using this device can lead to 
meaningful results. 

In this paper we consider a different configuration, depicted in Fig. 2, which is often 
more suitable from an experimental point of view. In this case pure semiconductor 
material, either of p- or n-type, is used. In terms of Cartesian coordinates x, y, z, the 
material fills the half-space y >/0. The plane boundary y = 0 is partly covered by a 
semi-infinite Schottky diode located at x ~ O, y = O. Inside the material minority carriers 
are injected at the point (Xo, Yo, Zo) by a SEM electron beam as before. The resulting 
current collected at the Schottky diode is given by 

i = (  ~ dz f ° D aC (x, O, z)dx (1.6) 
J_~  J_~  0y 

which can again be measured. 
The present configuration has received much less attention than that of Fig. 1, 

probably due to the fact that no analytical solution of the corresponding mathematical 
problem has been available hitherto. It is the aim of this paper to present such a solution. 
The mathematical problem requires again the solution of Eqn. (1.2), but now subject to 
the boundary conditions 

C(x,O,z)=O, x < 0 ;  oOC(x,O,z)=oC(x,O,z) ,  x > 0 ,  (1.7) 
0y 

at the Schottky diode and the remaining free surface, respectively; here, v denotes the 
surface recombination velocity as before. The problem described by Eqns. (1.2), (1.7), is a 
mixed boundary value problem which in general cannot be solved by elementary means. 
This may explain why the analytical solution of the problem has not yet been derived. The 

. x ] (x°'Y°'Z°) 

Schottky diode 

/SEM 
Figure 2. Configuration for diffusion length measurement by means of  a Schottky diode. 
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only inroad that has been made so far concerns the special case v = oo. Then the second 
boundary condition in (1.7) reduces to C = 0 and this condition is seen to prevail along 
the entire boundary y = 0. The method of images can now be brought into play and a 
simple solution is readily obtained [9,10,11]. 

In this paper  we shall present the solution to the complete problem, i.e. with arbitrary 
constant v in the range from 0 up to oo. The source term Q(x) in (1.2) is taken as either a 
line source at (x 0, Y0), or a point source at (x 0, Y0, z0), with Y0 > 0. It will turn out that the 
results for the current I are the same when the line and point sources are of equal strength. 
In Section 2 the problem is reformulated in a dimensionless form. It is pointed out that 
our problem resembles certain wave propagation and diffraction problems [12-16] which 
have been solved by Fourier transforms and the Wiener-Hopf technique [17]. The latter 
method is used in Section 3 to solve our diffusion problem. In Section 4 we derive an 
analytical expression for the current I. The expression obtained is in terms of a rather 
complicated integral, but its numerical evaluation presents no difficulty in principle. 
Section 5 deals with the limiting cases v = ~ and u = 0, in which the previous results 
simplify considerably. Finally, in Section 6 we discuss the asymptotics of the current I if 
the distance from the point of injection to the edge of the Schottky diode is large. 

Reference is made to the 'physical '  companion paper [18] which has extensive numeri- 
cal results for the current I. The main purpose of that paper is to present methods by 
which the diffusion length L and the dimensionless surface recombination velocity 
X = vLD-1 can both be determined from plots of the measured current versus the position 
of the injection point. Among the further topics treated in [18] we mention: the solution of 
the diffusion problem for a source of finite non-zero extent, the physical implications of 
the mathematical results and the use of the configuration of Fig. 2 as an experimental 
device. Summarizing, we feel that the two papers, [18] and this one, provide a nice 
example to show that the practicability of certain experiments strongly depends upon the 
availability of analytical solutions of mathematical models relevant to those experiments. 

2. Statement of the problem 

Consider the diffusion problem described by Eqns. (1.2), (1.7), in which the source term is 
taken either as a line source at (Xo, Yo), given by 

Q ( x ) = Q S ( x - x o ) 8 ( y - y o ) ,  Y0 > 0 ,  (2.1a) 

or as a point source at (x 0, Yo, z0), given by 

Q ( x ) = Q S ( x - x o ) 8 ( y - y o ) 8 ( Z - Z o ) ,  yo > 0 .  (2.1b) 

The constant Q in (2.1b) measures the strength of the source, i.e. carrier production per 
unit time, whereas in (2.1a) Q stands for the source strength per unit length. Clearly, in t h e  
case (2.1a) of a line source there is no dependence on the coordinate z and the problem 
becomes two-dimensional. We now introduce the dimensionless coordinates and parame- 
ter 

x ' = L - l x ,  y ' = L - a y ,  z ' = L - l z ;  X = v L D - 1 ,  (2.2) 



and the dimensionless concentrations 

p(x',y') = Q-aDC(x,y), p(x',y', z')= Q-'LDC(x,y, z), 
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(2.3) 

corresponding to the cases (2,1a) and (2.1b), respectively; here, L is the diffusion length 
defined in (1.3), and D is the diffusion constant. For simplicity we henceforth suppress the 
primes in the coordinates x', y', z'. Then the two-dimensional diffusion problem with 
injection by a line source can be reduced to the dimensionless form 

A p - - p = - - ~ ( X - X o ) 8 ( y - - y o ) ,  - - ° ° < x < ° ° , Y > 0 ;  (2.4a) 

p(x,O)=O, x < 0 ;  (2.4b) 

Op 
-~--fy(X,O)-Xp(x,O)=O, x > 0 .  (2.4c) 

Furthermore, to ensure uniqueness of the solution, it is required thatp --+ 0 as x 2 + y2 ___, oo, 
or more specifically 

p(x ,y)=O(r  -'~2e-r), r = ( x  2 + y 2 ) 1 / 2 ~ o o .  (2.4d) 

The current through the Schottky diode is found to be given by the dimensionless 
expression 

I fo ~p .  
-~ = j_oo-~y ( X, O)dx. (2.5) 

For the three-dimensional diffusion problem with injection by a point source, the 
dimensionless concentration p(x,  y, z) must satisfy the equation 

A p - p = - B ( X - X o ) 8 ( y - y o ) 8 ( Z - - Z o ) ,  - o ~ < x < o o ,  y > 0 ,  -o~  < z <  oo, 

(2.6) 

, f  zfO -0= ._o Ty (X, O,z) dx. (2.7) 

By comparing the two- and three-dimensional problems, it is recognized that their 
solutions are simply related by 

(2.8) 

Hence, the currents I/Q in (2.5) and (2.7) are the same for point and line source injection, 
as observed before by Van Roosbroeck [2], Van Opdorp [6]. Thus it is sufficient to solve 
the two-dimensional diffusion problem (2.4). 

and boundary and decay conditions similar to (2.4b, c, d). The dimensionless current is 
now given by 
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The mixed boundary value problem (2.4) resembles certain wave propagation and 
diffraction problems treated in the literature. In his study of water waves over a channel of 
infinite depth with a dock, Heins [12] was led to a problem identical to (2.4) without the 
source term in (2.4a), and with (2.4b) replaced by the condition that the normal derivative 
should vanish. Bazer and Karp [13] treated the propagation of a plane electromagnetic 
wave over a planar land-sea surface which is modelled by boundary conditions similar to 
(2.4b,c). Senior [14,15,16] studied the diffraction of a plane electromagnetic wave by an 
imperfectly conducting half-plane which is modelled by an impedance boundary condition 
of the form (2.4c). Notice that these diffraction problems are governed by the Helmholtz 
equation Au + k2u = 0, hence, to achieve agreement with Eqn. (2.4a), the parameter k 
should be taken imaginary. Also the right analog of our diffusion problem with injection 
by a line source would be the diffraction problem for an incident cylindrical wave rather 
than a plane wave. However, this defect is not very essential, since a cylindrical wave may 
be expressed as a superposition of plane waves. All papers mentioned above have in 
common that the solution of the mixed-boundary-value problems is derived by means of 
Fourier transforms and the Wiener-Hopf technique [17]. Thus it is most obvious to use the 
same tools in the solution of the diffusion problem (2.4). 

3. Solution by the Wiener-Hopf technique 

As a first step in the solution of the diffusion problem (2.4) we eliminate the source term 
in (2.4a) by subtracting a suitable particular solution. Thus we set 

p(x, y)= 2-~Ko(((X-Xo) 2 + ( y -  yo)2) 1/2) 

~-Ko(((X-Xo) 2 +(y+yo)2)l/Z)+u(x,y), (3.1) 

in which K o denotes the modified Bessel function of the second kind of order zero. It is 
well known that (2~r)-lK0(.) is a fundamental solution of Eqn. (2.4a). Moreover, the 
combination of two K 0 functions has been deliberately chosen to satisfy the boundary 
condition (2.4b). By substitution of (3.1) into (2.4) we arrive at the following boundary 
value problem for the function u(x, y): 

A u - u = 0 ,  - - o o < x < o o ,  y > 0 ;  (3.2a) 

0, x < 0, (3.2b) u(x, o)= f(x), x > o ;  

(g(x), x<0,  

3u I (((x_ Xo)2_+ y2) 1/2 -~y(X, O)-Xu(x, 0)= Yo K1 -_ ) 
, x > o ;  

(3.2c) 

u(x,y) = O(r -1/2 e-'), r= (x 2 +y2)1/2 ~ oo. (3.2d) 
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In (3.2b, c) the boundary conditions at y = 0 have been extended to the full range 
- oe < x < oe by the introduction of unknown auxiliary functions f(x) and g(x). Near 
the edge x = 0 of the Schottky diode we require that 

f(x) = O(1),  g ( - x )  = O(x-W2), x.l,O, (3.3) 

similar to the well-known edge condition from diffraction theory. The validity of the 
conditions (3.3) can be justified a posteriori. 

To solve the problem (3.2) we employ Fourier transformation with respect to the 
variable x. Thus we define 

f 
~ 

U(w,y) = u(x,y) e~WXdx, (3.4) 
o~ 

then U(w, y )  is an analytic function of the complex variable w in the strip - 1 < Im w < 1, 
by (3.2d). Furthermore, we introduce the Fourier transforms 

F+(w)= fo~f(x)ei~Xdx, G_(w)= f°oog(x)eiWXdx, (3.5) 

where the subscripts + and - indicate that these functions are analytic in the upper 
half-plane Im w > - 1 and the lower half-plane Im w < 1, respectively. This convention 
will be adopted throughout the paper. The Fourier transform of the Bessel function in 
(3.2c) is known from [19, form. 1.13(44)], viz. 

D(w) =y° [~  Kl(((x_X_o!2 - + y~)1_______/2)ei~Xdx=exp[ ixow-yo(w2 + 1)1/2] . (3.6) 
~r J_~ ((X__Xo)2 +yff)l /Z 

The corresponding Fourier integrals over the semi-infinite intervals ( -  oo, 0] and [0, oe) 
are denoted by D_(w) and D+(w), respectively, then D(w) = D_(w) + D+(w). By using 
these results in (3.2) we are led to the Fourier transformed problem 

~2 U 
- - - ( w 2  + 1 ) U = O ,  y > O ;  (3.7a) ay E 

V(w,O)=r+(w); 

a u  
Oy (w, o)-hU(w, o)= G_(w)-D+(w)= G_(w)+ D_(w)-D(w). 

(3.7b) 

(3.7c) 

Since the function U(w, y) must vanish as y ~ oe, the solution of Eqn. (3.7a) is easily seen 
to be 

U(w, y)= A(w) exp[ - y ( w  2 + 1)1/2], (3.8) 

in which the function A(w) is yet to be determined. The square root (w 2 + 1) 1/2 -- ( 1  - 

i w ) 1 / 2 ( 1  + iw) a/2 stands for the principal value, specified by -~" < arg(1 ~z iw) < ~r in the 
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complex w-plane with branch cuts along the imaginary axis from - ioo  to - i  and from i 
to io0. In the cut w-plane one has Re(w2+ 1) ' /2>0,  so that (3.8) is indeed the 
appropriate solution. By imposing the boundary conditions (3.7b, c) to the solution (3.8) 
we find 

A(w)=F+(w); -[~+(wZ+l)l/2]A(w)=G (w)+D_(w)-D(w). (3.9) 

Next, by elimination of A(w) we obtain the functional equation 

[X + ( w  2 + 1) '/2 ] F+(w) + G_(w) +D_(w)-D(w) = O, (3 .1o)  

valid in the strip - 1  < Im w < 1, which is amenable to solution by the Wiener-Hopf 
technique. 

The fundamental step in the Wiener-Hopf procedure for solving (3.10) is the factoriza- 
tion of ~ + (w 2 + 1) 1/2 through 

(w 2 + 1) '/2 --- (1 - iw)'/2(1 + iw) '/2, (3.11) 

H(w) = 1 + •(w 2 + 1) -'/.2 = H+(w)H_(w), (3.12) 

where it is required that H+(w) is analytic and non-zero in the upper half-plane 
Im w > - 1, while H_(w) is analytic and non-zero in the lower half-plane Im w < 1. the 
factors H+_(w) can be determined by means of Noble's procedure [17, p. 15, Thm. C], 
yielding 

1_!__ [ ~ + i a  log[1 + ~.(z 2 + 1) -1/2] dz]  
H+(w) = exp 2rri J - ~ + i a  Z"Z-W ' 

I m w > a ,  - 1 < a < 1 ,  (3.13) 

and H_(w)= H+(- w). It is remarked that essentially the same factorization as (3.12) is 
encountered in [12,13,14,15,16]. In these papers an alternative representation for the 
factors is derived which for our problem becomes 

,,+(i sin o)__ (cos o+cosx)lj2 [ lrx+ ,d,] 
l + s i n a  exp ~ j x _ ~  s~nt ' 

- ' r r /2  < Re a < .'n'/2, (3.14) 

where X = arccos X. The present expression is closely related to the function f employed by 
Senior [15,16], and to the function xI'. introduced by Maliuzhinets [20]. According to Bazer 
and Karp [13] a representation of the form (3.14) was already given by V.A. Fock as early 
as 1944. In this paper we employ the representation (3.13) of H+(w), which appears to be 
more convenient for numerical purposes. Returning to the functional equation (3.10), we 
substitute (3.11), (3.12), and divide by (1 + iw)l/2H_(w), then we obtain 

G (w)+D(w)  D(w) 
= o. (3 .15)  (1 - iw)'/2H+(w)F+(w) 4 

(1 + iw)l/ZH_(w) (1 + iw)l/ZH_(w) 
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F+(w) = 

G_: 

E+(w) 
(1 . \ 1 / 2  . .  t - lw)  n+~w) 

1 / 2  ; G_(w)=(l+iw) H_(w)E_(w)-D_(w).  

(3.21) 

Finally, from (3.9) and (3.21) we determine the function A(w) in (3.8). Then by inverse 
Fourier transformation of U(w, y) we obtain 

1 foo+ic E+(w) exp[_ixw_y(w 2 + 1)1/21dw ' 
u(x, y)  = 2-~ J -  oo +ic (1 - iw)l/2H+(w) 

- 1 < c < 1,  ( 3 . 2 2 )  

as the solution of the problem (3.2). Combined with (3.1) this result completes the solution 
of the diffusion problem (2.4). 

As the next step we carry out the decomposition 

D(w) =E+(w)+E_(w) (3.16) 
(I  + iw)'/2H_(w) 

where E+(w) and E_(w) are analytic in the half-planes I m w > - I  and I m w <  1, 
respectively. The components E_+(w) can be determined by means of Noble 's  procedure 
[17, p. 13, Thin. B], yielding 

I /-oo +ib D ( z )  dz 

E+(w)=2-~i"-~+ib(l +,z) rt_(z) z - w '  • x l / 2  . .  - - -  Im w > b, - 1  < b < 1, (3.17) 

1 f ~ + i ~  D(z) dz 
E (w) 27ri,_~+ic(1+iz)1/2H_(z ) z - w '  I m w < c ,  --1 ~ C ~  1.(3.18) 

Inserting (3.16) into (3.15), we rearrange the functional equation as 

(a-iw)l/2H+(w)r+(w) E+(w) G_(w)+D_(w) - = - ~- E _ ( w ) ,  ( 3 . 1 9 )  
(1 + iw)'/2H_(w) 

valid in the strip - 1 < Im w < 1. We now invoke the standard Wiener-Hopf argument. 
The left- and right-hand sides of (3.19) are analytic functions in the half-planes Im w > - 1 
and Im w < 1, respectively. These functions coincide in the common strip - 1 < Im w < 1. 
Therefore the two sides of Eqn. (3.19) define an entire function. From (3.3), (3.13), (3.17) 
and (3.18) we infer the asymptotic behaviour 

F+(w) = O(w-'), G_(w)= O(w-1/2) ,  O _ ( w )  = O ( w - 1 ) ,  

He(w ) = O(1),  e+(w) = O(w 1/2) (3.20) 

as w + ~ in the respective region of analyticity. Thus both sides of (3.19) tend to 0 as 
w---) m in the respective half-planes. Then by Liouville's theorem the entire function 
defined by (3.19) vanishes identically. This leads to the following solutions for F+ and 
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4. Current through the Sehottky diode 

In the present investigation the main interest is in the evaluation of the current through 
the Schottky diode, due to the injection of minority carriers by a line source at (x 0, Y0) or 
by a point source at (Xo, Yo, Zo). As pointed out in Section 2, both cases give rise to the 
same dimensionless current I / Q  given by (2.5) and (2.7). Using the boundary conditions 
(2.4b, c) we rewrite (2.5) as 

I r ~ [ 3 p ,  0) ]dx .  (4.1) -~=J_o~[~y (X, O) -XP(  x, 

Replace p by (3.1), then the resulting integral is recognized as the sum of the Fourier 
transforms (3.6) and (3.7c) with w = 0, so that 

I 
= G _ ( 0 ) + D  (0). (4.2) 

Substitute G_ from (3.21), then we obtain 

1/2 
/ = H _ ( 0 ) E _ ( 0 )  = (1 + X) E_(0) ,  (4.3) Q 

or, by means of (3.6) and (3.18), 

I ( l + k )  1/2 L . . . . . . .  ] dz O < c < l .  __ [oo+ic exp ixoz --y0(z 2 + 1) 1/2 

Q 2~ri J-~+ic (1 + i z ) l /2H_(z)  z ' 
(4.4) 

This result will now be simplified in the two cases x 0 >/0 and x 0 ~< 0. 
If x o >/0, the integration path in (4.4) is deformed into a loop around the branch cut 

from i to ioo. Beforehand, we replace the denominator (1 + iz)l/2H_(z) by [)~ + ( z 2 +  
1)1 /2] / [ (1-  iz)l/2H+(z)]. By setting z = i t  along the branch cut, we arrive at the 
representation 

_ (1 +-a)1/2"' f~(1 + t) 1/2 exp[F(X,  t)] e -x°t I 
Q ¢r al 

X sin(yo( t 2 -  1)1/2) + ( / 2 -  1) ' /2  cos(  yo(  t 2 -  1) 1/2) dt (4.5) 

X ~k2+ t2_ 1 -'T' 

valid for x 0 >/0. Here, the function F(M t) is a short notation for log H+(i t) .  Hence, by 
means of (3.13) with a --- 0 and applying the substitution (z 2 + 1) -1/2 = sin % we have 

f ~ l o g [ l + X ( z 2 + l )  -1/2] t ( , , / 21og( l+Xs inqo)  F()~, t )= t 
gr Yo z2 + t 2 dz . . . . . . . .  -- ~r Yo cos2qo + t2 sin2rp dep. 

(4.6) 

If x 0 ~< 0, the integration path in (4.4) is deformed into a loop around the branch cut from 
- i ~  to - i .  In the deformation a simple pole at z = 0 is intercepted and its residue 
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contribution should be accounted for. By setting z = - i t  along the branch cut and 
remembering that H _ ( - i t ) =  H+(i t ) ,  we obtain the representation 

I - -  = e-Y° Q ~r-h)'/2 f ~(1  + t ) - l /2exp[-F(X' t ) l  ex°' sin( y°(t2 - 1)1/2) t'dt (1 + 

(4.7) 

valid for x 0 ~< 0, in which F(?~, t) is given by (4.6). Although rather complicated, the 
expressions (4.5) and (4.7) are well-suited for a further evaluation by numerical integra- 
tion. Numerical results for the current I /Q are reported in [18]. 

5. Limiting cases X = oo and k = 0 

In the limiting cases 2~ = oo and 2~ = 0 the previous results can be considerably simplified. 
The case X = oo corresponding to an infinite surface recombination velocity v is of 
particular interest, since it is the only case in which the diffusion problem (2.4) has been 
solved in the literature [9,10,11]. When X = oo, the boundary conditions (2.4b, c) reduce to 
p(x, 0) = 0 applied along the entire boundary y = 0. Then the method of images supplies 
the solution in a simple manner, viz. 

. 2 \ 1 / 2 ~  P(x ,Y)=2~Ko(( (X-Xo)2+(Y-Yo)2) I /2 ) -2~Ko(( (X-Xo)2+(Y+Yo)  ) ). 

(5.1) 

From (2.5) the dimensionless current is found to be 

I _yo f°°Kl ( (xZ+y2)  1/2) 
Q -~ xo ( xz+y2)l/2 dx (5.2) 

which is identical to the expression derived by Ioannou and Dimitriadis [11]. The same 
result can also be obtained from (4.5) and (4.7) by taking the limit as A ~ oo. To that end 
we first establish the auxiliary result 

F(A t ) =  t / * / 2 1 o g X + l o g s i n  o(1) 
, "~ a0 COS2q0 + t2 sin2 ~ dq0 + 

= ½ 1 o g X - ½  l o g ( l + t ) + o ( 1 ) ,  1 ~ o ¢  (5.3) 

where the elementary integrals have been quoted from [21, form 3.647, 4.385(3)]. Using 
(5.3) in (4.5) and (4.7), we find in the limiting case X -- oo, 

I 1 oo dt  - -=--  f e-Xo' sin(yo(t2--1)l/2) t ' Xo>~O , 
Q ~rJ1 (5.4a) 

1 oo dt /=e-Yo----f eXotsin(yo(t2--1)l/2)--~_, Xo<~O. 
Q ~rJ1 (5.4b) 
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By differentiat ion of (5.4a, b) with respect to x 0, we obtain 

= - - - f  e-I~ol, s in (y0( t  2 - 1) l /2)d t  
Ox o 7r a 1 

fo~ (t2 ; 1 ) 1 / 2  exp 
_ _1 [_ lXol( t  2 + 1)1/2] sin(yot)d t 

yo 
cr (x2+y2)l/2 (5.5) 

where the latter Fourier  sine t ransform has been taken from [19, form. 2.4(36)]. Both 
results (5.4a) and (5.4b) can now be reduced to (5.2) in an obvious manner.  

Next  we consider the limiting case X = 0, corresponding to a surface recombinat ion 
velocity v = 0, for which the solution of the diffusion problem (2.4) has been lacking so 
far. When X = 0 ,  the factorization (3.12) becomes trivial, yielding H ± ( w ) =  1. As a 
consequence it is found from (3.1) and (3.22) that the solution for the concentrat ion 
p(x, y) is given by 

2 p ( x , y ) =  ~--~Ko(((x-x 0 +(y-yo)2) l /2 ) -  ~-~Ko(((X-Xo) 2 +(y+ yo)2) 1/2) 

1 r o e  + i c  

+ -7---57./ dw 
4qr i J - ~ + i c  

× foo+ib  e x p [ - i x w + i x o z - y ( w 2 +  1)'/2-yo(z2+ 1) 1/2 ] dz  

• ' - o o + i b  Z - -  W (1 - iw)X/2(1 + iz )  a/2 

- l < b < c < l .  (5.6) 

The  latter formidable double integral is very similar to the one encountered by Clemmow 
[22] in his t reatment  of the diffraction of a cylindrical wave by a perfectly conducting 
half-plane. By Clemmow's  analysis, properly modified,  the double integral in (5.6) can be 
reduced to a sum of two single integrals of error-funct ion type. Omitt ing the details we 
present  the final result for p(x, y) :  

_ e -R, f ,1  e - ?  e -Rz ,2 e -'2 (5.7) 
P ( x ' Y ) - - T j  0 (t2+2R1)1/2dt+ ~r fo (t2+2R2) 1/2dt' 

in which 

. 2 ~ 1 / 2  . 2 ~ 1 / 2  
R 1= { (X-Xo)2+(y -yo )  ) , R 2 =  ( ( X - X o ) 2 + ( y + y o ) )  , 

q = (r + r o - R , )  '/2, %= (r + r o -  R2) 1 / 2 s g n [ c o s ½ ( 0 + 0 o ) ] ;  
(5.8) 

here, (r ,  0) and ( r  o, 0o) denote polar  coordinates defined by x = r cos 0, y = r sin 0 and 
x o = r o cos 0 o, Yo = ro sin 0 o, with 0 ~< 0, 0 o ~< ~r. Alternatively and more simply, the solu- 
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tion (5.7) may be obtained directly from the final result in [22, Eqn. (30)] by exploiting the 
relationship between our diffusion problem (2.4) with X = 0 and Clemmow's diffraction 
problem. 

We now come to the evaluation of the current I / Q  in the case X = 0. As a first 
approach one might substitute (5.7) into (2.5); however, the further reduction of the 
current integral gets quite involved, although it does lead to the results (5.11a, b) below. 
Therefore we prefer to start from the expressions (4.5) and (4.7), taking the limit as X ~ 0. 
Since F(0, t) = 0 by (4.6), it is immediately seen that in the limiting case X = 0 the current 
is given by 

-Xotcos(y0(t 2 _ 1 ) ' / 2  ) d t ,  Xo>~O, I 1 ~ e  

Q-: f t ( t _  l) ' /2 
(5.9a) 

I = e - y ° - l  ~l°°eX°t s in (y° ( t2 -1 ) l /2 )  dt, Xo <~ O. 
Q ~r t( t  + 1) '/2 

(5.9b) 

In the Appendix it is shown that the integrals (5.9a, b) can be expressed in terms of the 
complementary error function defined by 

f O O  - - t  2 

e r f c ( z ) = ~ /  e dt. 
az 

(5.ao) 

Thus we have from (A.9), (A.10), 

1= ½e,o erfc[(ro-Yo) /  l + ½ e,o erfc[(r o + y o ) l / 2 1 ,  X o >  ~ 0,  
o 

(5.11a) 

I 

O 
- e-Yo - ½ e ,o erfc[ (ro - Yo )l/~ l +½ eY° erfc[(ro + yo)1/21 

= ½e-~oer fc[ - ( ro-Yo) ' /~ l  +½ e,o erfc[(r o +yo)l/21, Xo ~<0, (5.11b) 

in which r 0 = (Xo 2 +y02) 1/2. This completes the discussion of the limiting case X = 0. 

6. Asympto t i c s  of  the  current  I / Q  as x o -~ oo 

Although suitable for numerical calculations, the expressions (4.5) and (4.7) for the 
current I / Q  are too complicated to provide insight into the behaviour of the current as a 
function of the parameters x0, Y0, X. Therefore it is desirable to establish some simple 
approximate solution for the current, which is valid in a parameter range of practical 
interest. In this section we derive the asymptotic expansion of the current I / Q  as x 0 ~ oo. 
It is expected that the asymptotic approximation will be usable if the injection point is 
more than a few diffusion lengths away from the edge of the Schottky diode. 
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We first consider the case A > 0. Then the integral (4.5) can be shortly expressed as 

I -~ = f°°( t -  1)'/2G( t) e-X°tdt, (6.1) 

in which the function G(t) is regular in the vicinity of t = 1. The asymptotic expansion of 
the latter integral is derived by the method of Laplace. The basic idea in this method is 
that, if x 0 >> 1, the main contribution to the integral (6.1) stems from the immediate 
vicinity of the lower limit t = 1. The asymptotic expansion is obtained now by replacing 
G(t) by its Taylor expansion around t = 1, followed by a term-by-term integration. 
Retaining only two terms of the Taylor expansion, we find 

, 1_lj2 ,,,e xo[ 3o 1, ,] 
- Q - : " '  "~'*Jx~---~ 1-1 2 G(i) xOl+O(x02 ' XO-'+O0" (6.2) 

o 

Next, by inserting the actual values of G(1) and G'(1) implied by (4.5), we have the 
asymptotic approximation to second order 

I (1 + X)(1 + ky0) e -x° 
-~ = f ( k )  X2 qrl/2x3o/2 

[ { 2  21+ y0J3  ] 
× 1 - 2  ½+-~+g(X)+y6 iT_~-~oy ° Xol+O(xo2)  , Xo~OO. (6.3) 

Here the functions f ( ~ )  and g(X) are defined by 

f(A)= (1+ X) -1/2 exp[F(A, 1)]=(1+ A) -'/2 exp( 1 fo'~/21og(1 + h sin qQdqo], 

(6.4) 

OF ~ flw/2 sin cp cos2~ 
g()~) = - -~f()~, 1) = 7 j  ° ~- ~_-~ s-~n ~ acP, (6.5) 

in which the right terms have been obtained by means of (4.6). It is easily seen that both 
functions f ( k )  and g(?Q are monotonic for ~ >/0: f (A)  decreases from f ( 0 ) =  1 to 
f(oo)  = 2 -1/2, while g(~)  increases from g(0) = 0 through g(1) = ~r -1 - 1 /4  to g(oo) = 1/4.  
The elementary integral (6.5) can be evaluated, yielding 

1 1 g ( X ) =  ~7 []X2 - ½ + ~ (X + (1 - ~'2)1/2 arcc°s h )  ] '  

~_~[~h 2 1 ½ + ~ l { A _ ( A 2 _ l ) 1 / 2 1 0 g ( A + ( A 2 _ 1 ) l / 2 ) } ] ,  

O ~ A ~ I ,  

A ~ I .  

(6.6) 
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As a side-remark, the integral occurring in (6.4) can be expressed in terms of Clausen 
functions by means of Lewin [23, p. 308, form. (36), (38)], viz. 

1 ~/21og(1 + ~ sin ~ ) d ~  

1 ( 1 - (1 - ~k2) 1/2 
= ½ log(½+ ½(1 - ~k2) 1/2) q-'~-'~ arcsin X log 1 + (1 ~k2) 1/2 

+ 1C12(arcsinqr ~k) + l C 1 2 ( q r  - arcsin X), 0~< X ~< 1, (6.7a) 

h ( X ) = ~  l o g ( - X 2 ) + l c l 2 ( a r c s i n X - 1 ) + l c l 2 ( ~ r - a r c s i n X - 1 ) ,  X>~ 1, (6.7b) 

in which the Clausen function C12 is defined by [23, p. 102] 

sin(nqQ 
C12(~v) -- //2 

n = l  
(6.8) 

It is interesting to note that also the integral occurring in (3.14) can be expressed in terms 
of (complex) Clausen functions by means of [23, p. 306, form. (13)]. From C120r/2 ) = G, 
Catalan's constant, we have the special value f(1) = ½ exp[2G/~r] = 0.89581 to five decimal 
places. 

It is pointed out that the approximation (6.3) fails when X gets close to 0, and breaks 
down completely in the limiting case X = 0. It is easily verified that for small values of h, 
say 0 < X ~< 1, the error term O(xo 2) in (6.3) is to be replaced by O(?~-4Xo2). Hence, the 
approximation applies only under the stronger restriction ~2x 0 >> 1. Thus it is obvious that 
the approximation (6.3) is not uniformly valid in ?~ over the range ?~ > 0. In the limiting 
case X = 0 the asymptotics of the current I / Q  can be readily determined from the solution 
(5.11a). By use of the well-known asymptotic expansion 

- - Z  2 

erfc(z)--- e [1 - ½z -2 + O(z -4 ) ] ,  z ~ 00, (6.9) 
~1/2 Z 

we are led to the asymptotic approximation to second order 

I e-X° [1 -½( l+y2o )xo l+O(xo2 ) ]  x o oo 
O  '/2xg2 ' --, 

(6.10) 

A comparison of (6.3) and (6.10) shows again the non-uniformity in ?~: for ~ > 0 the 
current decays with distance x 0 according to Xo 3/2 e -x°, whereas for ?~ = 0 the current 
decay is governed by x o 1/2 e-xo. This different behaviour was first noticed by Davidson 
and Dimitriadis [9] for the limiting cases X = oo and X = 0. However, these authors did not 
show explicitly how their correct result for ?~ = 0 was obtained. 

In the limiting case X = oo the current I / Q  is given by (5.2). Through repeated 
integration by parts in (5.2), using the well-known recurrence relation for the modified 
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Bessel functions Km, w e  deduce the complete asymptotic expansion 

(2m)! (x 2 "~-yg)m/2gm((X2 2~1/2, 
I Y0 ~ (_l)m " x 2 m +  I -~Y6 ) )' XO ~ 00. (6.11) 
Q ~r 2"m! m=O 

Here the Bessel functions K m may be replaced by their asymptotic expansions, thus 
leading to the asymptotic approximation to second order 

9 + ½ y 2 ) X o ' + O ( x o 2 ) ] ,  x0--+ . I _ e-x----~° [1 - (-~ 
~ = 2  l/2yorr,/2X3o/2 (6.12) 

This result is identical to the asymptotic expansion derived by Ioannou and Dimitriadis 
[11]. Notice that (6.12) also follows by setting ~ = oo in (6.3). 

Finally, we present a simple uniform approximation for the current that is uniformly 
valid in X over the entire range X > 0. To that end we start from the integral (6.1) in which 
the function G(t), obtainable from (4.5), is replaced by 

2 1 + Xy o _ 2  (1 + ~)(1 + Xyo) 
(l+x)l/=exp[F(X,1)lx2+2(t_l) f (X)  X2+ 2 ( t _  1 ) (6.13) 

This amounts to a replacement of G(t) by G(1), except for the denominator X 2 + t 2 - 1 in 
(4.5) which is replaced by X 2 + 2(t - 1). Then, in the spirit of Laplace's method, we obtain 
the following approximation: 

I 2 f~ ( t -1 ) l / 2e  -x°' 
~ =  f ( X ) ( l + X ) ( l + ) ~ y o )  ~-~+~-77 ~ dt, X o ~ m .  (6.14) 

The latter integral is rewritten as 

f ~ ( t -  1)l/2e-X°tdtfo~exp[-(~ + 2 ( t -  1))s]ds 

= e-X°fo~e-X2"dsfo~t 1/2 e x p [ -  (x0 + 2s)t]dt 

_ / ,  oo e - X 2 s  

e 
X°Jo (x o+ 2s) 3/2 

ds 

which, via an integration by parts, can be expressed in terms of a complementary error 
function. In this manner we obtain the uniform approximation to first order 

I e _ X o  

-~ =f (X) (1  + X)(1 + Xy0) qrl/2xl/2 ~g 

x (1-~rl/2~(Xo/2)1/2eX2x°/2 erfcl~(xo/2)l/2]}, X o ~ .  (6.15) 

If X = 0, the approximation (6.15) reduces to the leading term of the expansion (6.10). If 
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> 0 and X2x0 >> 1, the erfc function may be replaced by its asymptotic expansion (6.9), 
whereupon the approximation (6.15) reduces to the leading term of the expansion (6.3). 
This explains why the approximation (6.15) is called uniform to first order. 

The numerical accuracy of the approximations of this section is investigated in the 
companion paper [18], through a comparison of numerical results based on the approxi- 
mations and on the exact solution of Section 4. 

Appendix: Evaluation of the integrals (5.9) 

This Appendix deals with the evaluation of the integrals 

me-Xo'cos(yo(t2--1) 1/2) 
II = l  f t( t-  1) '/2 dt,  (A.1) 

~ e-X°' s inAy°( t2-  1)'/2) dt,  
I2=2f~ t(t+l) 1/2 (A.2) 

in which x o >t 0, Yo >/0. Introduce polar coordinates (ro, 0o) defined by x o = r o cos 0 o, 
Yo = ro sin 0 o, with 0 ~< 0 o ~< ~r/2, and apply the substitution t = cosh s, then the integrals 
I l, 12 can be expressed as 

i 1  - -  1 2a/2qr f -  e x p [ - r  o c o s h ( s -  i0o)] cosh ½s ~ d s ,  (A.3) 

i 2  - 1 --21/2rr i f_~ exp[- ro c o s h ( s -  iOo) ] ~ d s . S i n h  ½s (A.4) 

We now consider the combinations 

1 ~ e x p [ - r  o cosh(s  - i8o) ] ds, 
I, + 12 - 2172 ~ g m  cos---'-h ~;7i- si--nh ½s (A.5) 

in which we replace the variable s by s + i8 0. The resulting integral is rewritten as 

oo 

ix+_I2 = 21/2~rl fo e x p [ - r ° c ° s h s ]  

• { [cosh ½(s + i8o) _+i sinh ½(s + i8o) ] -1 

+ [cosh ½(s - i0o) ~ i  sinh ½(s - i0o) ] -1}ds 

_ _  )fo ~ cosh ½s 2'/27r (cos ½8 o -T- sin ½8 o exp[ - r  o cosh s ] cosh s -T sin 8 o ds. (A.6) 
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T h r o u g h  the subs t i tu t ion  2 ' /2  s inh ½s = a, the lat ter  in tegral  t r ans fo rms  into 

exp[  - ro o2 ] 
I ,  + 12 2 ( c o s  ½0 o ~ s i n  ~0o)e - r ° fo°°  = a d o .  ( A . 7 )  

- o 2 + 1 -Y- sin 0 o 

Final ly ,  by  set t ing 

OO 
1 = f o  e x P l - ( ° e + l - T - s i n O ° ) t l d '  

o2 + 1 -Y- sin 0o 

in (A.7), and  by  in te rchang ing  the o rde r  of  in tegrat ion,  we f ind 

- r  r °0 e x p [ - ( 1  -T- sin 0o)t  ] 
I 1 ___ 12 = ~ - 1 / 2  (COS ½00 ~ s i n  ½Oo) e °./0 " ir~+-i)a/----- 2 d t  

f OQ 2 cos ½0o-Y-sin ½0Oexp[_Y_ro sin Oo I 2 e - t d /  
(1 -Y- sin 0o) ' /2  ~ aro~/:(a T sin 0o) ' / :  

= e -v- yo er fc[ ( ro  -T- Y0)1/2]. (A.81 

H e n c e  we have  

11 = ½e-yo er fc[ ( ro  - yo)  1/2] + ½e y° e r f c [ ( r  0 + yo)a /2] ,  (A.9)  

1 2 =  ½e-Yoerfc[(ro--Yo) 1/2] -- ½eY° erfc[ ( ro  + y o ) ' / 2 ] ,  (A.10)  

where  r 0 = (x~ + y2)1/2. 
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